Lecture 1 - The nature of pure mathematics
Lecture 2 - Basic set theory
Lecture 3 - Basic logic
Lecture 4 - Proofs
Lecture 5 - More about proofs
Lecture 6 - Set theoretic identities
Lecture 7 - Functions
Lecture 8 - Equivalence relations
Lecture 9 - Quotients
Lecture 10 - More functions
Lecture 11 - Binary operations
Lecture 12 - Groups
Lecture 13 - Rings and integral domains
Lecture 14 - Peeking under the carpet
Lecture 15 - The Integers
Lecture 16 - Induction
Lecture 17 - Applications of Induction
Lecture 18 - Uniqueness of Integers
Lecture 19 - Cardinality of sets
Lecture 20 - Division in the Integers
Lecture 21 - Congruences
Lecture 22 - Basic number theory
Lecture 23 - Fields
Lecture 24 - Real numbers
Lecture 25 - Complex numbers
Lecture 26 - Polynomials
Lecture 27 - System of Linear Equations
Lecture 28 - Gaussian elimination
Lecture 29 - Matrix Algebra
Lecture 30 - Square systems
Lecture 31 - The set of solutions
Lecture 32 - Vector spaces
Lecture 33 - Direct sums of subspaces
Lecture 34 - Spans and linear independence
Lecture 35 - Basis
Lecture 36 - Linear Maps
Lecture 37 - The Rank--Nullity theorem
Lecture 38 - Matrices and Linear transformations
Lecture 39 - Change of basis
Lecture 40 - Eigenvalues
Lecture 41 - Minimal Polynomial
Lecture 42 - Applications of the minimal polynomial
Lecture 43 - Triangular Form
Lecture 44 - Jordan Form
Lecture 45 - Examples of Canonical Forms