Learning Goals:

Identify the location of the vertex, V(h, k) from the equation.		Describe the effect \boldsymbol{a} has on the function if $a = 1$, $a > 1$, $a < 0$ (negative), or $a = 0$.
. (.,, .,, ,	3. 4	

Quadratic Parent Function: $y = x^2$

Vertex form of a Quadratic: $y = a(x - h)^2 + k$

Phet Link: https://phet.colorado.edu/en/simulation/graphing-quadratics

- 1. Open Play: Once you have opened the Graphing Quadratics Phet simulator, go to the 3rd screen vertex form. Take some time to play around with it.
- 2. What information does a quadratic expression in the vertex form reveal? How does it show that information?
- 3. What doesn't it tell us?
- 4. Why do you think this form is used?

Compare your results from questions 2-4 with your partner

5. Using PhET again, complete the following table to describe what the a, h and k values do to the parent function.

a, h & k	Describe the effect (transformation) if any.	Example Equation	Vertex V(h, k)
a = 1			
a > 1 (positive)			
a = 0			
a < 0 (negative)			

a, h & k	Describe the effect (transformation) if any.	Example Equation	Vertex V(h, k)
h > 0 (positive)			
h < 0 (negative)			
h = 0			
k > 0 (positive)			
k < 0 (negative)			
k = 0			

PREDICT: Without graphing, predict the coordinates of the vertex of the graphs of these quadratic functions, and predict whether the graph is a U shape ("opens up") or an upside-down U ("opens down").

equations	coordinates of vertex	graph opens up or down?
a. $y = (x + 10)^2$		
b. $y = (x - 4)^2 + 8$		
c. $y = -(x-4)^2 + 8$		
d. $y = x^2 - 7$		
e. $y = \frac{1}{2}(x+3)^2 - 5$		
f. $y = -(x + 100) + 50$		
$g. y = a(x+m)^2 + n$		

SUMMARIZE:

• When a quadratic equation is in vertex form of $y = (x-h)^2 + k$, the coordinates of the vertex are _____.

- When the equation is graphed, the graph opens upward if . . .
- The graph opens downward if . . .