Learning Goals:

- → Describe and predict how changing the coefficients of a quadratic function changes the graph of the function.
- → Identify specific geometric transformations on the coordinate plane (reflection, translation, dilation)

1. Explore the Graphing Quadratics simulation for a few minutes. Play with the values of a, b, and c, then describe how each changes the graph of the quadratic function.

Changing the value of a	Changing the value of b	Changing the value of c

Turn and talk with your neighbor about your observations.

2. View each graph and describe how to change the parent function ($y = x^2$) to make the 'new' parabola - be specific! (If you get stuck, brainstorm ideas with a neighbor.)

Graph	Describe transformation and action required	

Graph	Describe transformation and action required
Challenge!	