Name:	Class:
Date:	Period:

Activity Sheet 2 - How Many Solutions to a System of Equations?

1: Compare the pricing plans of the two gyms and discuss with a partner. Be sure to talk about any common points.

Sports Stars costs \$3 to enter and \$1 per game. Across town, Buffs Builders charges \$1 per game and \$5 to enter.

2. Create a system that has no solution. Graph it in the SIM. Write both equations.

Sketch both lines on the coordinate plane below, then **complete** the chart.

3. Create a different system that has no solution. Graph, and list the two equations.

Sketch both lines on the coordinate plane below, then **complete** the chart.

Line 1:

Y-Int: _____

Line 2:

Slope: ______
Y-Int: _____

Discuss with a partner: What do you notice about the equations?

4. Compare the pricing plans of the two gyms and discuss with a partner. Be sure to talk about any common points.

Sports Stars costs \$3 to enter and \$1 per game. Across town, Radical Rams charges \$1 per game and \$3 to enter.

5. Create a system that has Infinitely Many. Graph it in the SIM. Write both equations.

Sketch both lines on the coordinate plane below, then **complete** the chart.

6. Create a different system that has Infinitely Many. Graph, and list the two equations.

Sketch both lines on the coordinate plane below, then **complete** the chart.

Line 1:

Line 2:

Slope: _____

Slope: _____

Y-Int: _____

Y-Int: _____

Discuss with a partner: What do you notice about the equations?

Name:	Class:
Date:	Period:

7.

$y = \frac{4}{5}x + 2$	Try this without graphing. How do you know how many solutions will there be?	☐ One solution (,) ☐ No solutions Ø ☐ Infinitely many solutions
$y = \frac{4}{5}x - 6$		
$y = \frac{1}{4}x + 2$ $y = \frac{2}{8}x - (-2)$	Try this without graphing. How do you know how many solutions will there be?	☐ One solution (,) ☐ No solutions Ø ☐ Infinitely many solutions
$y = \frac{2}{5}x + 2$ $y = \frac{4}{3}x + 1$	Try this without graphing. How do you know how many solutions will there be?	☐ One solution (,) ☐ No solutions Ø ☐ Infinitely many solutions

Exit Slip:

- 3. Answer the following questions on an index card with your name on it.
- a) Describe a system of linear equations and its solution.
- b) How can you **determine** whether a system of linear equations has one solution, no solution, or infinitely many solutions by looking at the **graph**?
- c) How can you **determine** whether a system of linear equations has one solution, no solution, or infinitely many solutions by looking at the **equation**?