Laboratorio virtual: Electrostática

Nombre y apellidos		curso	
El objetivo de esta práctica es explorar interacciones entre cargas eléctricas.	el fenómeno de	e la electrización, la polarización y l	as
<u>1ª parte: Globos</u> Accede a la simulación en el enlace <u>htt</u> <u>electricity</u>	ps://phet.colorac	do.edu/es/simulation/balloons-and-s	static-
1. Utilizando el dibujo de la derech cargas que ves cuando abres la continuación completa la tabla. carga total, haz la resta cargas p cargas negativas. glob N° cargas positivas N° de cargas negativas Carga total (neta) RESTA	simulación. A Para calcular la ositivas –	PhE	
Frota el globo sobre el jersey, ar tabla:	rastrando todas	las partículas que puedas. Después,	completa la
glob	jersey		
Nº cargas positivas			
Nº de cargas negativas			
Carga total (neta) RESTA			
 a) ¿De qué signo son las carga b) ¿Qué tipo de carga extra tie c) El globo se queda cargado . d) ¿Qué tipo de carga pierde el e) El jersey se queda cargado . 	s que se pueden ne el globo? jersey?		
cargas negativas. ¿Cuál es la ca 6. Formula una hipótesis: ¿Qué pie negativas en él, hacia el muro n	rga total del mu nsas que pasará eutro? Rodea tu	í si arrastras el globo con todas las c ı elección:	•
atracción	repuls	sión nada	

7. Observa: arrastra el globo lentamente hacia el muro. ¿Qué ocurre cuando el globo es del muro? Contesta:a) ¿Se pueden mover las partículas negativas?	stá cerca
b) ¿Se pueden mover las partículas positivas?c) Describe lo que ocurre al acercar el globo cargado al muro y trata de dar una exp	plicación:
8. Dibuja en la figura de la derecha lo que hacen las cargas del muro	
cuando el globo está cerca de él.	
Este fenómeno físico de separación temporal de cargas se llama POLARIZACIÓN . Debid fenómeno, un objeto cargado eléctricamente puede atraer a uno neutro.	lo a este
9. Reinicia la simulación: a) Elige la opción de 2 globos. b) Frota ambos contra el jersey para que adquieran carga. c) ¿Qué ocurre cuando tratas de acercar un globo al otro? Explica por qué ocurre e	sto.
c) ¿que ocurre cuando autas de acerem un grobo m ono. Exprien por que ocurre e	
<u> 2ª parte: John Travoltaje</u>	
1. Accede a la simulación en https://phet.colorado.edu/es/simulation/john-travoltage	
2. Haz que John frote su pie contra la alfombra. ¿ ocurre?	Qué
3. Cuando John esté cargado, acerca su mano al pomo metálico de la puerta. Describe	
detalladamente lo que le ocurre.	
Cuando un cuerpo se carga eléctricamente, tiene tendencia a descargarse para recuperar s	

Cuando un cuerpo se carga eléctricamente, tiene tendencia a descargarse para recuperar su equilibrio eléctrico y ser neutro de nuevo. Así que el exceso de carga pasa a través de un conductor hasta el suelo. Este fenómeno se llama **descargar a "tierra"**, que es un lugar donde se puede descargar el exceso de carga.