PART I – ELECTRIC FIELDS

- Google: "Phet charges and Fields"
- Turn on the grid by clicking on the box next to "grid".
- Click on the box next to "show E-field" to show the electric field.
- Pull the required charges to obtain the arrangements shown below (one at the time)
- Q 1. Draw the direction of the electric field for each arrangement shown below.

- Q 2. What are the three properties of Electric Field lines?
 - •
 - •
 - •
- Q 3. Show that the units

$$\begin{bmatrix} N \\ C \end{bmatrix} = \begin{bmatrix} V \\ m \end{bmatrix}$$

are equivalent and both can be used for units of electric field. Remember [V] = [J/C]

Q 4. Complete the chart and the graph below. Use the equipotential sensor:

DISTANCE r [m]	ELECTRIC FIELD E [V/m]
0.1	

Q 6. What type of relationship do you find between Electric Field and distance? EXPLAIN.

Q 7. **THE CAPACITOR** - Create a capacitor by placing 10 positive charges in a row above 10 negative charges of equal magnitude. Draw the direction of the electric field between the parallel charged plates:

Q 8. Pull the required charges to obtain the arrangements shown below (one at the time). Use the superposition principle and:

- Draw the net electric field at the position of the E-field sensor.
- Write an expression for the net electric field at the position of the E-field sensor (show all your work).
- Find the magnitude and direction of the net electric field at the position of the E-field sensor (click on "show numbers" and verify your answers
- Note all charges are fixed at the grid, and 1 box = 0.1 m.

Q 9. Pull the required charges to obtain the arrangements shown below (one at the time). Use the superposition principle and:

- Draw the net electric field at the position of the E-field sensor
- Write an expression for the net electric field at the position of the E-field sensor (you don't have to show all your work)
- Find the magnitude and direction of the net electric field at the position of the E-field sensor.

PART II - ELECTRIC POTENTIAL

- Pull the required charges to obtain the arrangements shown below (one at the time)
- Bring the equipotential sensor close to the charge and click plot.
- Move the equipotential sensor away from the charge (just a little bit) and click plot.
- Repeat the process until you have 5 equipotential lines for each charge.

Q 10. Draw equipotential lines for each arrangement shown below.

Q 11. **THE CAPACITOR** - Create a capacitor by placing 10 positive charges in a row above 10 negative charges of equal magnitude. Draw equipotential lines around the parallel charged plates:

Q 12. Complete the chart and the graph below. Use the equipotential sensor:

DISTANCE r [m]	ELECTRIC POTENTIAL V [m]
0.1	

Q 13. What type of relationship do you find between Electric Potential and distance? Explain.

Q 15. Mathematical models [for electric force and electric potential energy use (Q and q)]

ELECTRIC FORCE		ELECTRIC FIELD 1	ELECTRIC FIELD 2
	Divide electric force by "q" →		
	J		

ELECTRIC POTENTIAL ENERGY

Divide electric potential energy by $q \rightarrow$

_		
	ELECTRIC POTENTIAL 1	ELECTRIC POTENTIAL 2

Q 16. Based on the definition of "Electric Field", define "Electric Potential".

Electric field

A property of a location in space that measures the **force per unit charge** that a charged object would feel if placed at that location.

Electric Potential

- Q 17. Pull the required charges to obtain the arrangements shown below (one at the time). Use the superposition principle and:
 - Draw electric potential lines at the position of the E-field sensor.
 - Write an expression for the net electric potential at the position of the E-field sensor (show all your work).
 - Find the magnitude of the electric potential at the position of the E-field sensor (compare to the number given by the sensor)
 - Note: all charges are fixed at the grid, 1 box = 0.1 m, and ELECTRIC POTENTIAL IS A SCALAR PHYSICAL QUANTITY)

- Q 18. Pull the required charges to obtain the arrangements shown below (one at the time). Use the superposition principle and:
 - Draw electric potential lines at the position of the E-field sensor.
 - Write an expression for the net electric potential at the position of the E-field sensor (You don't have to show all your work).
 - Find the magnitude of the electric potential at the position of the E-field sensor (compare to the number given by the sensor)

Q 19. Draw the equipotential lines and electric field for each arrangement shown below.

- Q 20. How are electric field lines and equipotential lines placed with respect to each other?
- Q 21. Can an electric field line begin and end on the same conductor?
- Q 22. Why is the surface of a conductor considered to be an equipotential surface?