| Name | SOTOFIS | Date | Period | Group | |-------------------------------------|--|---|------------------------|---| | Conceptual of Matter
Lab 17-2: B | Physics
Building an Atom (PhET simulat | ion) INTERACTIVE SI | | Chapter 17: The Atomic Nature | | PART I: AT | TOM SCREEN | | | | | Go to the simulation | e website: phet.colorado.edu. Cli
on (<u>htt</u> r | ick on HTML5 simulatio
o://phet.colorado.edu/en/ | | | | | the <i>Build an Atom</i> simulation with bserved in the simulation. | h your group. As you ex | xplore, talk about wha | t you find. List two things your | | a. | | | | | | | | | nict chang | | | b. | | | | | | | | | | | | | n the + sign for each of the boxes (
of particles in the atom. | element name, net charg | ge and mass number) | to view changes as you change the | | . What pa | article(s) are found in the center of | the atom? | brotons & | neutrons | | . Play unt | article(s) are found in the center of til you discover which particle(s) | determine(s) the name c | f the element you bu | ild. protons | | | the name of the following atoms? | | | V | | a. An | atom with 3 protons and 4 neutror | ns: Lithuur | n | | | b. An | atom with 2 protons and 4 neutron | ns: Lithium |) JASKY | | | c. An | atom with 4 protons and 4 neutron | | | | | | th the simulation to discover which | // | | + , clertrons - | | a. Nei | utral atoms havethe same numb | ber of protons and ele | ctrons. | | | b. Pos | sitive ions have | ne p | rotons than electrons. | | | c. Neg | gative ions have | wer p | rotons than electrons. | | | 8. Develop | o a relationship (in the form of a si | ngle sentence or equation | | e charge based on the number and and - electrons a of the ion or adom | | 9. Play wit | th the simulation to discover what | affects the mass numbe | r of your atom or ion. | protens + nentro | | | nat is a rule for determining the r | mass number of an atom | m or ion? | rons = mass #. | 10. Practice applying your understanding by playing 1st and 2nd levels on the game screen. ## PART II: SYMBOL SCREEN Using the Symbol readout box, figure out which particles affect each component of the atomic symbol and how the value of the numbers is determined. | Position in symbol box | Term to describe this information | Particle used to determine this | How the value is determined | |------------------------|-----------------------------------|---------------------------------|----------------------------------| | a | Element symbol | protons | # of p will identify the element | | ь | net charge | protono + electr | $p^+ + e^-$ | | С | Atomic number | protona | H Q P | | d | mass number | Protons, neutrons | A + h | Create a definition (using a complete sentence) for each of these items based on your labels from the atomic symbol above. | a. | Element Symbol is Letter or letters | used to represent | the name of | - | |----|-------------------------------------|-------------------|------------------------|---| | | an element. | | resorted strong and gr | | b. Charge is determined by adding + protons + - electrons | c. | Atomic Number | ia | number | A. | protons | 4 | wu | identify | the | |----|---------------|----|--------|----|---------|---|----|--------------------|-----| | | | 1 | loment | 0 | 1 | | | MOTOR E BILLY HOLE | | d. Mass Number is number of particles in nucleus (p+n) Practice applying your understanding by playing the 3rd and 4th game levels. Play until you can get all the questions correct on the 4th level. Fill in the information here for your last screen of the 4th game level: | 2 | amp | _ | |---|-----|---| | 0 | ١. | 0 | | | He | | | _ | | | protons neutrons electrons 4. In addition to atomic symbol, we can represent atoms by name and mass number. Complete the table below: | Symbol | Name | | | |------------------------------|---------------|--|--| | $^{12}_{6}C^{+1}$ | Carbon-12 | | | | ¹⁸ ₉ F | Fluorine - 18 | | | | ¹¹ ₅ B | Bron - 11 | | | a) Each representation (Symbol and Name) in the table above provides information about the atom. Describe the Symbol has more info - atomic to, mass to the alone of the similarities and differences between the Symbol and Name representations. Name tells mame a mass to only. (Name of element to the clue for atomic to the similarities and differences between the Symbol and Name representations. Name tells mame a mass to only. (Name of element to the clue for atomic number.) No information for charge is given. | PA | RT III: ISOTOPES | |----|--| | 1. | Play with the simulation to determine: | | | a. Which particles affect the stability of the atom? representations | | | b. Which particles do not affect the stability of the atom? <u>ellefrons</u> | | 2. | What are the names of the stable forms of oxygen? | | | a. Oxygen-16 b. Oxygen-17 | | | c. Oxygen- <u>18</u> | | 3. | List all of the things that are the same about these atoms (ignore the electrons). | | | Same # of protons | | 4. | List all of the things that are different about these atoms (ignore the electrons). | | | Different # of neutrons | | 5. | The atoms in the previous question are isotopes of each other. Based on this information, list the requirements for two atoms to be isotopes of each other. | | | They must be the Same element (Same II of p) but have different this & neutrons | | | but have different to & neutros | | _ | To describe the first section of the | | 6. | Test your understanding of isotopes by examining the relationships between the pairs of atoms listed below: | | | 2 1 1 2 1 1 2 1 1 1 2 2 1 1 2 1 2 1 2 1 | | Atom 1 | Atom 2 | Relationship between atom 1 and atom 2 | |---|---|--| | $^{12}_{6}C$ | $^{13}_{6}C$ | ✓ Isotopes☐ Same Atom, Not Isotopes of Each Other☐ Different Element | | Carbon-12 | $^{12}_{6}C$ | ☐ Isotopes ☐ Same Atom, Not Isotopes of Each Other ☐ Different Element | | Argon-40 | Argon-41 | ✓ Isotopes☐ Same Atom, Not Isotopes of Each Other☐ Different Element | | $^{11}_{5}B$ | Boron-10 | ✓ Isotopes☐ Same Atom, Not Isotopes of Each Other☐ Different Element | | An atom with 13 protons and 13 neutrons | An atom with 14 protons and 13 neutrons | ☐ Isotopes ☐ Same Atom, Not Isotopes of Each Other ☐ Different Element | ## PART IV: REVIEW EXERCISES | 1. The periodic table has a great deal of information about every atom. Using your periodic table, answer the following | questions: | | 200 | | | | |---|------------|---|-----|---|-----|---| | | | C | | , | , 1 | 8 | | a. | What is the atomic number of chlorine (Cl)? | / c. | How many protons are there in any Cl ator | n? 1 | 7 | |----|---|------|---|------|---| | | 4 0.1 | 1 | | - 2 | - | b. What is the atomic number of tungsten (W)? 74 d. How many protons are there in any Te atom? 52 | 2. | Can you tell from your own periodic table exactly how many neutrons are in an atom? Explain your answer. | |----|--| | | You cant. mars # on our table is average mass. So we | | | round it to whole it + use that to gind man of | | 3. | Nound it to whole # + use that to gind man of most common iso tape + use that to find neutrons of How will you use your periodic table to find the number of neutrons? | | | Round are mass 4 to whole it. Substrait that | | | atomic # (# gp) from mass # (p + n) to find only. | | 4. | What do an atom, ion and isotope of an element have in common? Same # by protoms | | 5. | How are they different? John of an element have different | | | Testopes of an element have different this of newbrows | | | | 6. Complete the following table: | complete the follow | | Atomic | Mass | Number of | Number of | | |---------------------|--------------------------------|--------|--------|-----------|------------|--------| | Name | Symbol | number | Number | neutrons | Electrons | Charge | | hydrogen-2 | ² H | 1 | 2 | 1 | 1 | 0 | | Rydogun - 3 | ³ H | 214 37 | 3 | 2 | was though | δ | | sodium-22 | ²² Na ⁺ | SK 11 | 22 | 11 | 10 | +1 | | megnesium 24 | 24 mg | 12 | 24 | 12 | 12 | 0 | | nagresim-25 | 25 mg = 2 | 12 | 25 | 13 | 310 | 多十 | | titanium-46 | Ti ⁻² | 22 | 46 | 24 | 24 | -2 | | silver -107 | ¹⁰⁷ Ag | 47 | 107 | 40 | 47 | 0 | | Eluoune-19 | ¹⁹ F ⁻¹ | 9 | 19 | 10 | 10 | -1 | | carbon-12 | 12°C | 6 | 12 | le | 6 | 0 | | carbon-13 | 13 C | . 6 | 13 | 7 | 6 | ٥ | | carbon-14 | C | 6 | 14 | 8 | 6 | 0 | | carbon-12 | 12 0 | 6 | 12 | le | 7 | -1 | | carbon-12 | 12 (| 6 | 12 | Le | 5 | +1 | | Helium- 9 | ⁴ He | 2 | 4 | 2 | 2 | 0 | | Orygen-16 | 1652 | 8 | 16 | 8 | 10 | # - | | argon-40 | 45Ar | 18 | 40 | 22 | 18 | 0 | | gollium-70 | ⁷⁰ Ga | 31 | 70 | 39 | 31 | 0 | | Gallina -70 | ⁷⁰ Ga ⁺³ | 31 | 70 | 39 | 28 | +3 | | Beryllin - 9 | 9 Be+2 | 4 | .9 | 5 | 2 | +2 | | Nitraan-B | 15N-1 | 7 | 15 | 8 | 8 | -1 | ^{7.} To test your knowledge of isotopes, draw arrows between all pairs of atoms in the table above that are isotopes of each other