

Clicker Questions for Isotopes and Atomic Mass

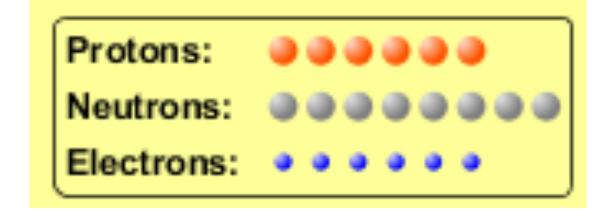
AUTHORS:

Yuen-ying Carpenter (University of Colorado Boulder)

Robert Parson (University of Colorado Boulder)

Trish Loeblein (University of Colorado Boulder)

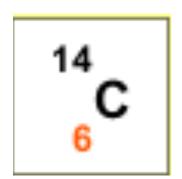
COURSE:

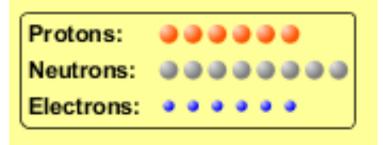

Introductory Chemistry

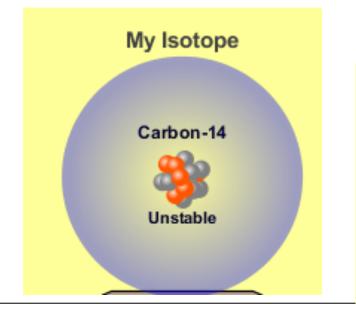
COPYRIGHT: This work is licensed under a

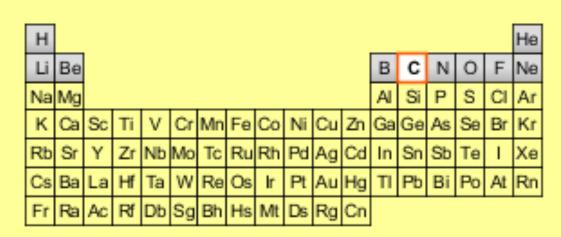
<u>Creative Commons Attribution 4.0 International License.</u>

What would this be?

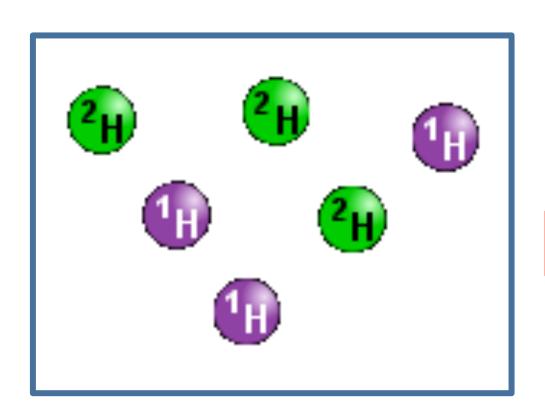

- a. Carbon-12
- b. Carbon-14
- c. Oxygen-14
- d. More than one of these



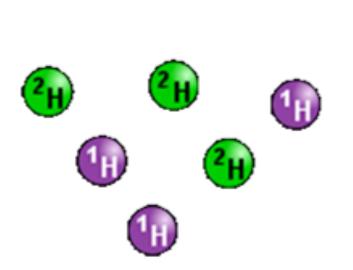

Reason:

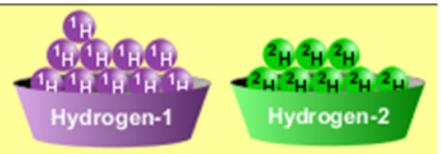

The number of protons tells the name of the atom; the mass is given by the sum of protons and neutrons

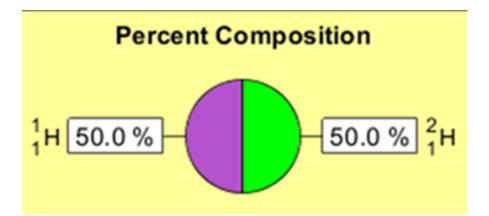
6 protons +8 neutrons

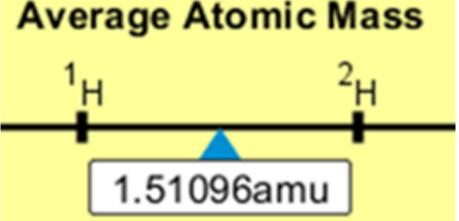

Which of these pairs of atoms are isotopes?

	Pair A		Pair B		Pair C	
# of protons	6	8	5	2	12	12
# of neutrons	8	8	5	3	12	14

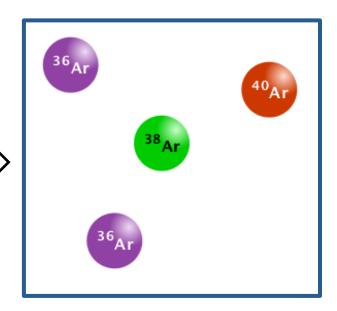

What is the approximate average mass of a hydrogen atom in this sample?




- a. 6 amu
- b. 2 amu
- c. 1.5 amu
- d. 1 amu



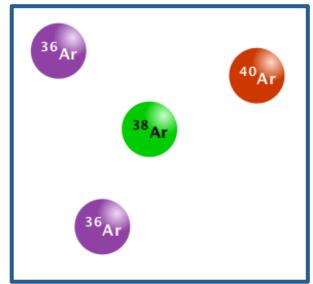
Reason: 3/6 gives 50% of each, so... 0.5*2 + 0.5*1 = 1.5 amuor 3*2 + 2*1 = 1.5 amu

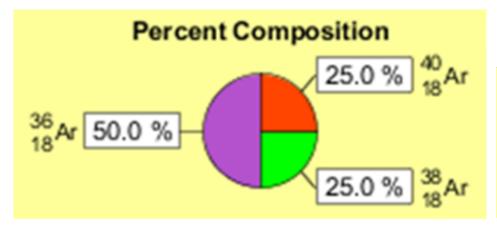


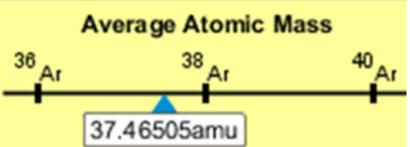
Why are there more digits in the answer in the sim?

What is the approximate average mass of an argon atom in this sample?

a. 40 amu b. 38 amu


c. 37.5 amu




Calculation:

0.5*36 + 0.25*38 + 0.25*40 = 37.5 amu

Number of ⁶ 3Li atoms Mass of 1 atom = 6.01512 amu		Number of 7Li atoms Mass of 1 atom = 7.01600 amu	Average atomic mass of sample (amu)	
Sample 1	3	2	6.41548	
Sample 2 6		4		

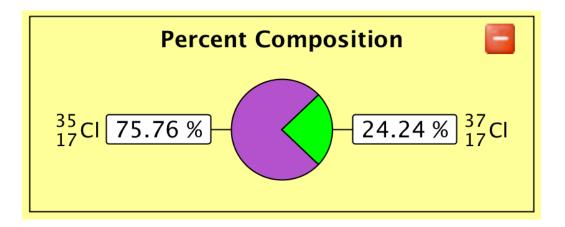
Is the average atomic mass closer to the mass of a lithium-6 atom or a lithium-7 atom?

- a. Lithium-6
- b. Lithium-7

To figure this out, let's start with some small samples...

	Number of 6Li atoms Mass of 1 atom = 6.01512 amu	Number of 7Li atoms Mass of 1 atom = 7.01600 amu	Average atomic mass of sample (amu)
Sample 1	3	2	6.41548
Sample 2 6		4	?

Will the average atomic mass of sample 2 be...


- a. More than Sample 1
- b. Same as Sample 1
- c. Less than Sample 1
- d. I don't know how to determine this.

Sample 2 7_{Li} Equal to Sample 1 6.41548 amu average 7_{Li} Equal to Sample 1 6.41548 amu average

In nature, chlorine has the following composition:

The average atomic mass of a natural sample of chlorine is...

²⁰Ne 19.992 amu

²¹Ne 20.994 amu

²²Ne 21.991 amu

10

Ne

20.18

Which isotope has the highest natural abundance?

- a. ²⁰Ne
- b. ²¹Ne
- c. ²²Ne
- d. All isotopes have the same abundance
- e. Impossible to tell from this information

Magnesium has three naturally occurring isotopes:

²⁴Mg 23.985 amu
 ²⁵Mg 24.986 amu
 ²⁶Mg 25.983 amu

In a sample with an average atomic mass of 24.98 amu, which isotope is the most abundant?

- a. ²⁴Mg
- b. ²⁵Mg
- c. ^{26}Mg
- d. All isotopes have the same abundance
- e. Impossible to tell from this information

10

Ne

20.18

²⁰Ne

²¹Ne

²²Ne

Which isotope has the highest natural abundance?

Can we answer the question without being given the exact isotopic masses?

- a. Yes
- b. No

²⁰Ne

²¹Ne

²²Ne

Which isotope has the highest abundance in a sample of Ne?

Can we answer the question without being given the average atomic mass of the sample?

- a. Yes
- b. No

²⁰Ne

²¹Ne

²²Ne

Which isotope has the highest abundance in a sample of Ne with average atomic mass of _____?

Can we answer the question for any sample, no matter what the average atomic mass?

- a. Yes
- b. No

Challenge problem:

Argon has three stable isotopes, with these atomic masses:

³⁶Ar 35.968 amu

³⁸Ar 37.963 amu

⁴⁰Ar 39.962 amu

You measure the average atomic mass of several different samples of argon, and are asked to predict the most abundant isotope in each sample.

For which of these samples is this prediction impossible?

Sample A, a naturally-occurring sample of argon

Sample B, average atomic mass = 36.5 amu

Sample C, average atomic mass = 37.5 amu

Sample D, average atomic mass = 39.5 amu

Lithium

3

Li

6.941

Complete the following sentence with a unit.

On average, lithium weighs 6.941 _____.

- a. g/atom
- b. g/mol
- c. amu/mol
- d. amu / atom
- e. More than one of the above

