

Annotated Lecture Slides for Sugar and Salt Solutions

AUTHORS:

Yuen-ying Carpenter (University of Colorado Boulder)

Trish Loeblein (University of Colorado Boulder)

COURSE:

Introductory Chemistry

COPYRIGHT: This work is licensed under a

Creative Commons Attribution 4.0 International License.

Learning Goals

- Explain the difference between the conductivity of solutions of ionic and molecular compounds based on the presence or absence of freely moving charged particles
- Describe the atomic-level structural features of ionic compounds
- Describe the forces involved in ionic bonding
- Identify if solutions contain ionic or molecular compounds based on conductivity
- Identify if solutions contain ionic or molecular compounds based on atomic-scale representations
- Describe the bonding in ionic compounds of polyatomic ions
- Determine if a chemical compound is best described as ionic or molecular based on its chemical composition, specifically whether it contains metal and non-metal elements or not

How does the **atomic-level structure** of compounds affect their **observable properties**?

Conductivity in solution Types of chemical bonds

How can we use the **periodic table** to predict the bonding and properties of compounds?

Beaker Contents	Observations
Water	
Water + Salt	
Water + Sugar	

Beaker Contents	Observations
Water	No conductivity (lightbulb does not light)
Water + Salt	Lightbulb lights up. More salt added = brighter bulb. Solid salt by itself does not conduct.
Water + Sugar	No conductivity (lightbulb does not light)

Conductivity

For a substance or mixture to conduct electricity...

- It must contain charged particles
- Charged particles must be free to move or migrate

But we know both salt and water have no overall charge, separately....

When salt (NaCl) dissolves in water, ...

	it will produce	Because	
A	[NaCl] ⁺ molecules	It transfers electrons to the water.	
В	Na ⁺ and Cl ⁻ ions	Electrons are transferred from Na atoms to Cl atoms	
С	Na ⁺ and Cl ⁻ ions	The ions in the salt separate	
D	H ⁺ and OH ⁻ ions It forces water to break into H ⁺ a OH ⁻ ions		
E	More than one of the above		

What's happening at the atomic level?

Beaker Contents	Observations	
Water + Salt	Before	After
Water + Sugar	Before	After

What's happening at the atomic level?

Beaker Contents	Observations	
Water + Salt	- Ions - Multiple repeating units	After
Water + Sugar	- No charges	- No charges - Same structure (highlighted in yellow for visibility)

Ionic Compound Example

- Repeated units in larger lattice
- Units are made of charged ions

Ionic Bonding

 A type of chemical bond due to the attractive electrostatic force between cations and anions.

• Electrostatic forces: attraction/repulsion that exists between charged particles.

Sodium chloride is solid at room temperature: NaCl_(s)

Will *melted* sodium chloride NaCl_(l) conduct electricity?

A. Yes

B. No

C. It depends

Electrolyte	Non-electrolyte

Electrolyte	Non-electrolyte
Conducts electricity	Does not conduct electricity
Release ions when dissolved in water (Dissociation OR ionization)	No mobile or dissociated ions

✓ ionic compounds are always electrolytes (*if* they dissolve in water).

Which box shows an electrolyte dissolving in water?

Molecular Compound Example

- Discrete units
- Atoms held together by covalent bonds
- Usually do not dissociate in water

Sucrose, C₁₂H₂₂O₁₁

Covalent Bonding

Chemical bonds due to the sharing of electrons by two (or more) atoms

Copyrighted textbook graphic omitted.

Description:

Graph depicting lower energy state of covalently bonded H₂ molecule compared to H atoms separated by a large distance

How many of these pictures correctly depict the all of the features of solid NaCl?

a. Zero

b. 1

c. 2

How many of these pictures correctly depict the all of the features of solid NaCl?

Incorrect – solid NaCl doesn't form discrete molecules.

Incorrect – solid NaCl does not dissociate (until we dissolve it in water)

Incorrect, unless we define the circles as ions – solid NaCl does form an extended lattice like this, but it is made of charged ions even when it's a solid.

a. Zero

b. 1

c. 2

Chemical Name	Chemical Formula	Electrolyte?	Type of bonding
Sodium chloride	NaCl		
Sucrose	C ₁₂ H ₂₂ O ₁₁		
Calcium chloride	CaCl ₂		
Glucose	$C_6H_{12}O_6$		
Sodium nitrate	NaNO ₃		

Chemical Name	Chemical Formula	Electrolyte?	Type of bonding
Sodium chloride	NaCl	Yes	Ionic
Sucrose	C ₁₂ H ₂₂ O ₁₁	No	Covalent
Calcium chloride	CaCl ₂	Yes	Ionic (note that more ions means higher conductivity per formula unit vs. NaCl)
Glucose	$C_6H_{12}O_6$	No	Covalent
Sodium nitrate	NaNO ₃		

What kind of bonding is in this compound **before** it goes into the water?

a. Ionic b. Covalent c. Both d. Neither

Chemical Name	Chemical Formula	Electrolyte?	Type of bonding
Sodium chloride	NaCl	Yes	Ionic
Sucrose	C ₁₂ H ₂₂ O ₁₁	No	Covalent
Calcium chloride	CaCl ₂	Yes	Ionic (note that more ions means higher conductivity per formula unit vs. NaCl)
Glucose	$C_6H_{12}O_6$	No	Covalent
Sodium nitrate	NaNO ₃	Yes	Ionic (between Na ⁺ and NO ₃ ⁻) and Covalent (within the polyatomic ion NO ₃ ⁻)

Polyatomic Ions

- Polyatomic ion
 - A group of covalently bonded atoms with an overall net charge
- Oxoanions
 - A common class of polyatomic ion that contains oxygen and another element

Copyrighted textbook graphic omitted

Description:

Depictions of other common polyatomic ions, to expand on the example of a nitrate anion shown in the simulation

	Ionic compounds	VS	Molecular compounds
	ionic		covalent
Resul	ts from attraction of positive and negative ions	Type of Bonding	Results from sharing of electrons between atoms

Ionic compounds	VS	Molecular compounds
ionic		covalent
Results from attraction of positive and negative ions	Type of Bonding	Results from sharing of electrons between atoms
Always dissociates (ionizes) Always an electrolyte	Behavior in water	Usually does not dissociate *exception: ACIDS & BASES

Ionic compounds	VS	Molecular compounds
ionic Results from attraction of positive and negative ions	Type of Bonding	covalent Results from sharing of electrons between atoms
Always dissociates (ionizes) Always an electrolyte	Behavior in water	Usually does not dissociate *exception: ACIDS & BASES
Repeating units	Structure	Discrete entities

Ionic compounds	VS	Molecular compounds
ionic Results from attraction of positive and negative ions	Type of Bonding	covalent Results from sharing of electrons between atoms
Always dissociates (ionizes) Always an electrolyte	Behavior in water	Usually does not dissociate *exception: ACIDS & BASES
Repeating units	Structure	Discrete entities
Formula unit		Molecular formula
Represents the smallest whole number ratio of elements	Chemical formula	Represents the actual number of atoms in each discrete molecule

How does the atomic-level structure of compounds affect their observable properties?

Conductivity in solution Types of chemical bonds

How can we use the **periodic table** to predict the bonding and properties of compounds?

Metals, Nonmetals, and Metalloids

Metals:

- Characteristic luster (shiny!).
- Good conductors of heat and electricity.
- Solid at room temperature, except mercury.

Nonmetals:

- Dull in appearance.
- Poor conductors of heat and electricity.

Metalloids:

 Possess some metallic and some non-metallic properties (sometimes depends on the situation!)

Chemical Name	Chemical Formula	Electrolyte?	Type of bonding	Component elements
Sodium chloride	NaCl			☐ Metal☐ Non-metal
Sucrose	C ₁₂ H ₂₂ O ₁₁			☐ Metal☐ Non-metal
Calcium chloride	CaCl ₂			☐ Metal☐ Non-metal
Glucose	$C_6H_{12}O_6$			☐ Metal☐ Non-metal
Sodium nitrate	NaNO ₃			☐ Metal☐ Non-metal

Chemical Name	Chemical Formula	Electrolyte?	Type of bonding	Component elements
Sodium chloride	NaCl	Yes	Ionic	☑ Metal ☑ Non-metal
Sucrose	C ₁₂ H ₂₂ O ₁₁	No	Covalent	
Calcium chloride	CaCl ₂	Yes	Ionic (note that more ions means higher conductivity per formula unit vs. NaCl)	☑ Metal ☑ Non-metal
Glucose	C ₆ H ₁₂ O ₆	No	Covalent	
Sodium nitrate	NaNO ₃	Yes	Ionic (between Na ⁺ and NO ₃ ⁻) and Covalent (within the polyatomic ion NO ₃ ⁻)	☑ Metal ☑ Non-metal

- INTERACTIVE SIMULATIONS

Ionic compounds	VS	Molecular compounds
ionic Results from attraction of positive and negative ions	Type of Bonding	covalent Results from sharing of electrons between atoms
Always dissociates (ionizes) Always an electrolyte	Behavior in water	Usually does not dissociate *exception: ACIDS & BASES
Repeating units	Structure	Discrete entities
Formula unit		Molecular formula
Represents the smallest whole number ratio of elements	Chemical formula	Represents the actual number of atoms in each discrete molecule
metals + non-metals together	Elements involved	Only non-metals INTERACTIVE SIMULATIONS

Which compound is ionic?

- A. CO
- B. MgF₂
- C. Al_2O_3
- D. Both CO and MgF₂
- E. Both MgF₂ and Al₂O₃

Which compound is ionic?

- A. CO
- B. MgF₂
- C. Al_2O_3
- D. Both CO and MgF₂

E. Both MgF₂ and Al₂O₃

A metal combined with a non-metal make an "ionic compound".

