

TITLE

Molecule Shapes

AUTHORS

Timothy Herzog (Weber State University)
Emily Moore (University of Colorado Boulder)

COURSE

General Chemistry I

TYPE

In-Class Guided-Inquiry Activity

TEACHING MODE

Facilitated Group Inquiry

LEARNING GOALS

Students will be able to:

- Determine electron geometry and molecule geometry for molecules using VSEPR theory.
- Explain the role that nonbonding electron pairs play in determining molecule geometry.
- Predict bond angles in covalent molecules as well as deviations from idealized bond angles.

COPYRIGHT

This work is licensed under a <u>Creative Commons Attribution 4.0 International</u> License.

This license allows users to share and adapt the materials, as long as appropriate attribution is given (with a link to the original), an indication if changes have been made, and an indication of the original licensing.

Molecule Shapes

MODEL 1:

Molecule Shapes Simulation

(http://phet.colorado.edu/en/simulation/molecule-shapes)

PART I: ELECTRON DOMAINS

- 1. Explore the *Model* screen of the simulation. As you explore, answer the following questions.
 - a. How does adding an **atom** affect the position of existing atoms or lone pairs?
 - b. How does adding a **lone pair** affect the position of existing atoms and lone pairs?
- 2. Is the effect of adding bonded **atoms** and **lone pairs** to the central atom similar? Explain why this could be the case.

We can think of a bond or a lone pair of electrons as a "domain" of electrons. Single bonds, double bonds, and triple bonds each count as one domain.

- 3. How do the electrons in bonds (bonding domains) differ from lone pairs (non-bonding domains)?
- 4. What happens to the **bond angle** when you add or remove an electron domain?
- 5. Can you force the atoms into new configurations by pushing atoms around? What does this suggest about the configuration of atoms in real molecules?
- 6. What is the difference between *Electron Geometry* and *Molecule Geometry*?
- 7. In one or two grammatically correct sentences, write a definition for the term *Molecule Geometry*.

Comment [1]: Learning Goals: Students will be able to:

- •Determine electron geometry and molecule geometry for molecules using VSEPR theory.
- •Explain the role that nonbonding electron pairs play in determining molecule geometry.
- Predict bond angles in covalent molecules as well as deviations from idealized bond angles.

Comment [2]: Give students time to explore the simulation and then answer questions 1-7 in small groups. When most of the groups have completed question 7, have groups report answers. 1 and 2 will likely be quick, but questions 3-7 should take more time.

PART 2: DRAWING MOLECULES TO SHOW 3-DIMENSIONALITY

MODEL 2:	Line, Wedge and Dash Drawings
	Line: In the plane of the paper:
	Wedge: Coming forward, in front of the plane of the paper: Dash: Going backward, behind the plane of the paper:
In the In fror	each of the 5 atoms in the molecule CHFClBr? plane of the paper H — C t of the plane of the paper Br

9. Using the *Model* screen, add bonding domains (•) to the central atom (○). Using lines, wedges and dashes from Model 2, draw each molecule's shape.

Bonding Domains Around Central Atom	Drawing of Shape	Electron Geometry	Bond Angles
2	•-0-•	Linear	180°
3	0		
4	0		
5	0		
6	O		

Comment [3]: It is important to help students validate their answers to question 9. Since it is more visual, this is a great place to borrow a student's paper and show it on a document camera. Get feedback from the rest of the groups to see if they agree with the answers.

10.	In the <i>Model</i> screen, build a molecule with 5 ator	ns attached to the central atom. Look at the
	molecule geometry and electron geometry. Pred	lict what will happen to the molecule
	geometry as you replace atoms with lone pairs.	

Your Prediction:		

11. In the following table draw the **molecule geometry**. As a group, make a **prediction for each first,** and then compare your answers with the simulation.

Predict First, Then Compare with the Simulation				
Number of Domains Around Central Atom	1 Lone Pair	2 Lone Pairs	3 Lone Pairs	4 Lone Pairs
3				
4				
5				
6				

Comment [4]: Question 10-11 provide an opportunity to model the scientific method. Have students write their predictions on the board before they do any experiments. After they have had a chance to complete the table in question 11, have students share their answers with a document camera or on the board. If necessary, model some correct structures, but it is best if students get coaching to come up with the structures themselves.

PART 3: COMPARING MODEL VS. REAL MOLECULES

- 12. Explore the *Real Molecules* screen.
 - c. List the molecules that show a **difference in bond angle** between "Real" and "Model". Note: differences in bond angle may be small.

Number of Lone Pair Domains		

- d. What do all of the molecules in the table have in common?
- e. What trend do you observe that distinguishes lone pairs from bonding domains?
- 13. Use the simulation to build a system with 5 domains. This is called a trigonal bipyramidal structure. The two different sites in a trigonal bipyramid are labeled as A and B in the drawing to the right.

5

- f. Each A atom is adjacent to 3 B atoms. What is the A-C-B bond angle?
- g. Each B atom is adjacent to 2 A atoms and 2 B atoms. What is the B-C-B bond angle.
- h. In a system with 4 atoms and 1 lone pair, predict whether the lone pair will be in a B site or an A site? Explain.
- i. Examine the molecule SF₄ in the Real Molecules screen to check your prediction from question c. Which interactions are more important in determining where the lone pair will go?

Comment [5]: After the majority of students have finished question 13, it is useful to confirm answers with the class.

EXERCISES:

- 1. A molecule has 2 double bonds on the central atom and no lone pairs. Predict the electron geometry. Predict the molecule geometry. What do you think the bond angles would be?
- 2. For each of the molecules below, determine the electron geometry, molecule geometry, and bond angles. Draw pictures to show your geometries.

a. CCl₄ (4 Cl atoms, no lone pairs on C)

b. PF₃ (3 F atoms, 1 lone pair on P)

c. OF₂ (2 F atoms, 2 lone pairs on 0)

- d. I_{3} (2 I atoms and 3 lone pairs on central I)
- 3. Use any resources required to add names to all the geometries in the table on page 3.

Challenge Question:

Imagine a molecule with 7 electron domains.

The geometry is called pentagonal bipyramidal. This has a lot of similarities to a 6-coordinate molecule except there are 5 domains in one plane. Predict the following based on this information:

- a. Draw the structure of a molecule with 7 bonding domains.
- b. List all the bond angles possible between adjacent atoms.
- c. Predict the electron and molecule geometry for a molecule with 6 bonding domains and a single lone pair.
- d. Predict the electron and molecule geometry for a molecule with 5 bonding domains and two lone pairs.

Comment [6]: The exercises and challenge questions are often assigned as homework.