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Sándor Nagy: Tricky Dimensions – a Spin-off of a Sim 
Abstract The Gas Properties sim – and probably all the other simulations on this topic I know of (see e.g. 

the one by Paul Falstad) – consider a 2D gas rather than a 3D one to make the simulation run 
faster (I believe). This approach still yields a qualitatively reasonable speed distribution (which 
looks very much similar to the Maxwell distribution), yet it “spoils” the energy distribution 
(from the point of view of 3D persons like you and me). However, this unavoidable flaw that 
goes with the simplification gives us an interesting insight into the world of dimensions. 

It is a coincidence of two stimuli that caused me to write this “contribution” to the Gas 
Properties sim. 

One stimulus has come from the simulation itself. If you are familiar with the Maxwell 
distribution of the monatomic ideal gas, then you will have no problem with accepting 
the speed histogram (Fig. 1) calculated by the program, however you will find the shape 
of the energy histogram (Fig. 2) rather puzzling. 

 

If you can’t remember how the probability densities should look like, have a glance at the 
respective distributions below obtained from the kinetic theory of the monatomic ideal 
gas. Whereas Figs. 1 and 3 are pretty similar, Fig. 2 seems to represent rather an 
exponential distribution than the red curve in Fig. 4.  

 
(I have labeled some characteristics in Figs. 3 and 4 for my students to see that the most 
probable energy is not the energy of a molecule moving at the most probable speed.) 

Fig. 1 Fig. 2 

Fig. 3 Fig. 4 

http://www.falstad.com/gas/�
http://phet.colorado.edu/en/simulation/gas-properties�
http://phet.colorado.edu/en/simulation/gas-properties�
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When I noticed the difference, my first thought was that the apparent exponential shape 
of the histogram was just an artifact caused by the poor resolution (large bin width) 
combined with the skewness of the red curve which it should represent. As it turns out 
further below, my assumption was wrong: the histogram indeed represents an exponential 
distribution rather than the red curve that I expected. 

My second stimulus came from an effort to give my students some chemistry-related 
background to χ2 distribution which makes it more appealing to them than the more 
abstract knowledge that χ2 distribution is a useful tool for judging the goodness of fit of 
nuclear spectra (see the Curve Fitting sim). (You may want to know that I teach the 
basics of nuclear science to chemistry majors at a Hungarian university, but I also try to 
teach them a little statistics and probability theory on the side.) 

If you are not too familiar with statistics, then you must take my word for the following. 
[Note that I have also prepared an electronic handout for my students in Hungarian with 
the details (ValSum.pdf, Section 6.2), but it isn’t very popular, so I have not translated it.] 

Let the speed u 
(i.e. the absolute 
value of the 
velocity vector) 
be given in the 
special unit of 

mkT / . Now if 
you consider an 
ideal gas in 1D, 
2D, and 3D, then 
it turns out that 
the speed has chi 
distribution with 
degree of freedom 
being equal to the 
dimension of the 
gas, i.e. χ(1), χ(2), 
and χ(3), 
respectively. The 
black curve in 

Fig. 5 shows that χ(1) – which applies to 1D – happens to be a half Gaussian (normalized 
to 1). For 2D and 3D the curves are qualitatively similar to each other, but not quite the 
same. From a low-resolution histogram like the one in Fig. 1, one can only tell for sure 
that it cannot represent a 1D gas. However, it can represent a 2D gas just as well as a 3D 
gas. (If you have difficulty of picturing a 1D gas, think about it as an arbitrary direction 
in a 3D gas along which you measure the 1D distribution of a speed component.) The 3D 
curve gives you the Maxwell distribution known from books on physical chemistry: 
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Fig. 5 

http://phet.colorado.edu/en/simulation/curve-fitting�
http://nasa.web.elte.hu/loadable/ValSum.pdf�
http://en.wikipedia.org/wiki/Chi_distribution�
http://en.wikipedia.org/wiki/Chi_distribution�
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Let us determine now the kinetic energy distributions of the same gases (i.e., 1D, 2D, and 
3D). It turns out now that if we measure the kinetic energy  in unit of kT/2 (which is the 
most probable energy in 3D according to the label in Fig. 4), then the energy distributions 
will be χ2(1), χ2(2), and χ2(3), respectively, where the degree of freedom of the chi square 
distribution equals the number of dimensions of the gas.  

As we can see in Fig. 6, the qualitative shape of the distribution curve sensitively depends 
on the dimension of the gas.  

For a 1D gas, the probability density approaches infinity at  = 0, then it decreases 
sharply.  

For a 2D gas, the 
maximum of the 
distribution curve 
is a finite value at 
 = 0, then it 
decreases 
exponentially just 
like in the case of 
Fig. 2. This leads 
to the conclusion 
that the simulation 
must represent a 
2D gas. (This 
conclusion has 
been confirmed 
by Samuel Robert 
Reid of PhET.) 
The median of the 
exponential is at 
ε1/2 = kT. This 
means that half of 

the molecules possess energy less than kT, while the other half more than kT.  

For 3D, we get the Maxwell–Boltzmann distribution whose unnormalized curve is shown 
in Fig. 4: 









kTkTkT
f

 exp
π

2
)(  

                                                 
 Note that in 3D, according to Fig. 4, the value of the median in 2D (i.e. kT) happens to be equal to the 
kinetic energy of a molecule moving at the most probable speed. In 2D, however, the energy belonging to 
the most probable speed mkT /  (see the maximum position of the blue curve in Fig. 5) is only kT/2.  

Fig. 6 

http://en.wikipedia.org/wiki/Chi-square_distribution�
http://en.wikipedia.org/wiki/Chi-square_distribution�
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Conclusion 

So what is the point of this “contribution”? – you may ask.  

The main point is that dimensions are tricky.  

When you went to college, you must have met with the concept of n-dimensional 
Euclidean spaces during your math studies. You probably had the same feeling as I had. 

Is that so simple? Wow! – you thought. 

Maybe you were just as naive as I was as a student. I, for instance, would never have 
suspected that dimensions have any surprise in store for me. This was, of course, way 
before I first heard about fractal dimensions.  

The first big shock came when I studied applied mathematics as a chemist and learned 
about a certain type of random walk in probability theory. The theorem I am referring to 
throws light on a big difference between ≤ 2D and ≥ 3D cases. The difference can be 
phrased in simple words like this. In 1D and 2D you cannot be lost hopelessly in an 
infinite maze if you choose your moving direction at random. In 3D or higher however, 
you will get lost for good sooner or later.  

The final message (which may be appreciated by some of your students) is that the 
simulation works fine, but it is not about our 3D world, which can be most markedly seen 
from the energy distribution. However, if our world were “flatter” by one dimension, then 
gases would behave in that 2D universe just as the simulation predicts. 
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