Names: 1.	
2	
3	

Electric Field and Electric Force

In this lab you will be utilizing a simulation to investigate the electric force and electric field. After you have logged in to the computer, open the browser and navigate to http://phet.colorado.edu/sims/charges-and-fields/charges-and-fields en.html. Wait for the simulation to load. After it does, check the boxes for "Show E-field," "grid," and "Show numbers." Then take a few minutes to familiarize yourself with how the simulation works. Go ahead... I'll wait...

Part I:

Place a +1 nC charge on the field. It is helpful to place it on the intersection of two dark lines. Assume that this charge is located at the origin. Place an E-field Sensor at each of the following locations, and complete the data in the table. (note: 1 V/m = 1 N/C)

X	Y	r (m)	Field Strength (N/C)	Direction (degrees)
1 m	1 m			
2 m	2 m			
-1 m	1 m			
0.5 m	-1 m			

Part II:

We will now replace the +1 nC charge with a -1 nC charge. Before you make the change, predict what changes you will see in the table:

Now, exchange the +1 nC charge for a -1 nC charge. Make sure the +1 charge is completely removed from the grid, or it will affect your data. Complete the table for the new charge arrangement.

X	Υ	r (m)	Field Strength (N/C)	Direction (degrees)
1 m	1 m			
2 m	2 m			
-1 m	1 m			
0.5 m	-1 m			

Part III:

We will now investigate the E-field associated with a multiple charge arrangement. This time, place a +1 nC charge at one point and place a -1 nC charge 2m to the right of the positive charge. To give ourselves a frame of reference, we will establish a point in the middle of this arrangement as the origin, so that our positive charge will be located at coordinates (-1,0) and the negative charge will be at (1,0). Your grid should now look like this:

Place an E-Field Sensor on each of the following "coordinates" and complete the table with the needed information.

Х	Υ	r _{positive} (m)	r _{negative} (m)	Field Strength (N/C)	Direction (degrees)
0 m	0 m				
0 m	1 m				
-1.5 m	1 m				
0.5 m	-1 m				

Part IV: Analysis

	For part 1, calculate what the value for the E-field <u>should</u> be for a +1 nC charge at a distance of 1.414 m (that is the square root of 2). Assuming your calculated value is correct, compute the percent error for the computer simulation.
2) '	Why do you think the error found in question 1 is present?
	For Part III, where on the grid is the field the strongest? Is there anywhere on the grid that the field equals zero?